Preprints

bib

@unpublished{PichiDeflationbasedCertifiedGreedy2025,
title = {Deflation-Based Certified Greedy Algorithm and Adaptivity for Bifurcating Nonlinear {{PDEs}}},
author = {Pichi, Federico and Strazzullo, Maria},
year = {2025},
note = {arXiv:2501.12361},
eprint = {2501.12361},
primaryclass = {math},
publisher = {arXiv},
doi = {10.48550/arXiv.2501.12361},
archiveprefix = {arXiv} }

[21] Federico Pichi, Maria Strazzullo. Deflation-Based Certified Greedy Algorithm and Adaptivity for Bifurcating Nonlinear PDEs. arXiv:2501.12361, 2025.

bib

@unpublished{TomadaSparseIdentificationBifurcating2025,
title = {Sparse {{Identification}} for Bifurcating Phenomena in {{Computational Fluid Dynamics}}},
author = {Tomada, Lorenzo and Khamlich, Moaad and Pichi, Federico and Rozza, Gianluigi},
year = {2025},
note = {arXiv:2502.11194},
eprint = {2502.11194},
primaryclass = {math},
publisher = {arXiv},
doi = {10.48550/arXiv.2502.11194},
archiveprefix = {arXiv}}

[20] Lorenzo Tomada, Moaad Khamlich, Federico Pichi, Gianluigi Rozza. Sparse Identification for Bifurcating Phenomena in Computational Fluid Dynamics. arXiv:2502.11194, 2025.

bib

@unpublished{GonnellaNonlinearReductionStrategies2025,
title = {Nonlinear Reduction Strategies for Data Compression: A Comprehensive Comparison from Diffusion to Advection Problems},
shorttitle = {Nonlinear Reduction Strategies for Data Compression},
author = {Gonnella, Isabella Carla and Pichi, Federico and Rozza, Gianluigi},
year = {2025},
note = {arXiv:2501.12816},
eprint = {2501.12816},
primaryclass = {math},
publisher = {arXiv},
doi = {10.48550/arXiv.2501.12816},
archiveprefix = {arXiv} }

[19] Isabella Gonnella, Federico Pichi, Gianluigi Rozza. Nonlinear Reduction Strategies for Data Compression: A Comprehensive Comparison from Diffusion to Advection Problems. arXiv:2501.12816, 2025.

bib

@unpublished{HirschNeuralEmpiricalInterpolation2024,
title = {Neural Empirical Interpolation Method for Nonlinear Model Reduction},
author = {Hirsch, Max and Pichi, Federico and Hesthaven, Jan S.},
year = {2024},
note = {arXiv:2406.03562},
eprint = {2406.03562},
primaryclass = {cs, math},
publisher = {arXiv},
archiveprefix = {arXiv} }

[18] Max Hirsch, Federico Pichi, Jan Hesthaven. Neural Empirical Interpolation Method for Nonlinear Model Reduction. arXiv:2406.03562, 2024.

bib

@unpublished{GonnellaStochasticPerturbationApproach2024,
title = {A Stochastic Perturbation Approach to Nonlinear Bifurcating Problems},
author = {Gonnella, Isabella Carla and Khamlich, Moaad and Pichi, Federico and Rozza, Gianluigi},
year = {2024},
note = {arXiv:2402.16803},
eprint = {2402.16803},
publisher = {{arXiv}},
doi = {10.48550/arXiv.2402.16803},
archiveprefix = {arxiv} }

[17] Isabella Gonnella, Moaad Khamlich, Federico Pichi, Gianluigi Rozza. A Stochastic Perturbation Approach to Nonlinear Bifurcating Problems. arXiv:2402.16803, 2024.

bib

@unpublished{RathoreProjectionbasedReducedOrder2024,
title = {Projection-Based {{Reduced Order Modelling}} for {{Unsteady Parametrized Optimal Control Problems}} in {{3D Cardiovascular Flows}}},
author = {Rathore, Surabhi and Africa, Pasquale Claudio and Ballarin, Francesco and Pichi, Federico and Girfoglio, Michele and Rozza, Gianluigi},
year = {2024},
note = {arXiv:2410.20828},
eprint = {2410.20828},
publisher = {arXiv},
doi = {10.48550/arXiv.2410.20828},
archiveprefix = {arXiv} }

[16] Surabhi Rathore, Pasquale Africa, Francesco Ballarin, Federico Pichi, Michele Girfoglio, Gianluigi Rozza. Projection-Based Reduced Order Modelling for Unsteady Parametrized Optimal Control Problems in 3D Cardiovascular Flows. arXiv:2410.20828, 2024.

Published

bib

@article{KhamlichOptimalTransportbasedDisplacement2025,
title = {Optimal Transport-Based Displacement Interpolation with Data Augmentation for Reduced Order Modeling of Nonlinear Dynamical Systems},
author = {Khamlich, Moaad and Pichi, Federico and Girfoglio, Michele and Quaini, Annalisa and Rozza, Gianluigi},
year = {2025},
journal = {Journal of Computational Physics},
volume = {531},
pages = {113938},
doi = {10.1016/j.jcp.2025.113938},
urldate = {2025-03-20} }

[15] Moaad Khamlich, Federico Pichi, Michele Girfoglio, Annalisa Quaini, Gianluigi Rozza. Optimal Transport-Based Displacement Interpolation with Data Augmentation for Reduced Order Modeling of Nonlinear Dynamical Systems. Journal of Computational Physics, 2025.

bib

@article{KhamlichOptimalTransportInspired2025,
title = {Optimal {{Transport}}–{{Inspired Deep Learning Framework}} for {{Slow-Decaying Kolmogorov}} n-{{Width Problems}}: {{Exploiting Sinkhorn Loss}} and {{Wasserstein Kernel}}},
shorttitle = {Optimal {{Transport}}–{{Inspired Deep Learning Framework}} for {{Slow-Decaying Kolmogorov}} n-{{Width Problems}}},
author = {Khamlich, Moaad and Pichi, Federico and Rozza, Gianluigi},
year = {2025},
journal = {SIAM Journal on Scientific Computing}, pages = {C235-C264},
publisher = {{Society for Industrial and Applied Mathematics}},
doi = {10.1137/23M1604680} }

[13] Moaad Khamlich, Federico Pichi, Gianluigi Rozza. Optimal Transport--Inspired Deep Learning Framework for Slow-Decaying Kolmogorov n-Width Problems: Exploiting Sinkhorn Loss and Wasserstein Kernel. SIAM Journal on Scientific Computing, 2025.

bib

@article{MorrisonGFNGraphFeedforward2024a,
title = {{{GFN}}: {{A}} Graph Feedforward Network for Resolution-Invariant Reduced Operator Learning in Multifidelity Applications},
shorttitle = {{{GFN}}},
author = {Morrison, Oisin M. and Pichi, Federico and Hesthaven, Jan S.},
year = {2024},
journal = {Computer Methods in Applied Mechanics and Engineering},
volume = {432},
pages = {117458},
doi = {10.1016/j.cma.2024.117458} }

[14] Oisin Morrison, Federico Pichi, Jan Hesthaven. GFN: A Graph Feedforward Network for Resolution-Invariant Reduced Operator Learning in Multifidelity Applications. Computer Methods in Applied Mechanics and Engineering, 2024.

bib

@article{PichiGraphConvolutionalAutoencoder2024,
title = {A Graph Convolutional Autoencoder Approach to Model Order Reduction for Parametrized {{PDEs}}},
author = {Pichi, Federico and Moya, Beatriz and Hesthaven, Jan S.},
year = {2024},
journal = {Journal of Computational Physics},
volume = {501},
pages = {112762},
doi = {10.1016/j.jcp.2024.112762} }

[12] Federico Pichi, Beatriz Moya, Jan Hesthaven. A Graph Convolutional Autoencoder Approach to Model Order Reduction for Parametrized PDEs. Journal of Computational Physics, 2024.

bib

@article{PichiArtificialNeuralNetwork2023,
title = {An Artificial Neural Network Approach to Bifurcating Phenomena in Computational Fluid Dynamics},
author = {Pichi, F. and Ballarin, F. and Rozza, G. and Hesthaven, J. S.},
year = {2023},
journal = {Computers \& Fluids},
volume = {254},
pages = {105813},
doi = {10.1016/j.compfluid.2023.105813}}

[11] Federico Pichi, Francesco Ballarin, Gianluigi Rozza, Jan Hesthaven. An Artificial Neural Network Approach to Bifurcating Phenomena in Computational Fluid Dynamics. Computers & Fluids, 2023.

bib

@article{KhamlichModelOrderReduction2022,
title = {Model Order Reduction for Bifurcating Phenomena in {{Fluid-Structure Interaction}} Problems},
author = {Khamlich, M. and Pichi, F. and Rozza, G.},
year = {2022},
journal = {International Journal for Numerical Methods in Fluids},
doi = {10.1002/fld.5118}}

[10] M. Khamlich, F. Pichi, G. Rozza. Model Order Reduction for Bifurcating Phenomena in Fluid-Structure Interaction Problems. International Journal for Numerical Methods in Fluids, 2022.

bib

@article{PichiDrivingBifurcatingParametrized2022,
title = {Driving Bifurcating Parametrized Nonlinear {{PDEs}} by Optimal Control Strategies: Application to {{Navier-Stokes}} Equations with Model Order Reduction},
shorttitle = {Driving Bifurcating Parametrized Nonlinear {{PDEs}} by Optimal Control Strategies},
author = {Pichi, F. and Strazzullo, M. and Ballarin, F. and Rozza, G.},
year = {2022},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
publisher = {{EDP Sciences}},
doi = {10.1051/m2an/2022044}}

[9] F. Pichi, M. Strazzullo, F. Ballarin, G. Rozza. Driving Bifurcating Parametrized Nonlinear PDEs by Optimal Control Strategies: Application to Navier-Stokes Equations with Model Order Reduction. ESAIM: Mathematical Modelling and Numerical Analysis, 2022.

bib

@article{pintore2019efficient,
author = {Pintore, M. and Pichi, F. and Hess, M. and Rozza, G. and Canuto, C.},
title = {Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method},
journal = {Advances in Computational Mathematics},
volume = {47},
number = {1},
year = {2020},
doi = {10.1007/s10444-020-09827-6}}

[8] M. Pintore, F. Pichi, M. Hess, G. Rozza, C. Canuto. Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method. Advances in Computational Mathematics, 2020.

bib

@article{Pichi2020,
author = {F. Pichi and A. Quaini and G. Rozza},
title = {A Reduced Order Modeling Technique to Study Bifurcating Phenomena: Application to the {G}ross-{P}itaevskii Equation},
journal = {SIAM Journal on Scientific Computing},
volume = {42},
number = {5},
pages = {B1115-B1135},
year = {2020},
doi = {10.1137/20M1313106}}

[7] F. Pichi, A. Quaini, G. Rozza. A Reduced Order Modeling Technique to Study Bifurcating Phenomena: Application to the Gross-Pitaevskii Equation. SIAM Journal on Scientific Computing, 2020.

bib

@article{Pichi2019,
author={Pichi, F. and Rozza, G.},
title={Reduced basis approaches for parametrized bifurcation problems held by non-linear {V}on {Karman} equations},
journal={Journal of Scientific Computing},
year={2019},
doi={10.1007/s10915-019-01003-3},
volume={81},
number={1},
pages={112–135}}

[6] F. Pichi, G. Rozza. Reduced basis approaches for parametrized bifurcation problems held by non-linear Von Karman equations. Journal of Scientific Computing, 2019.

Books

bib

@book{RozzaRealTimeReduced2024,
title = {Real {{Time Reduced Order Computational Mechanics}}: {{Parametric PDEs Worked Out Problems}}},
shorttitle = {Real {{Time Reduced Order Computational Mechanics}}},
author = {Rozza, Gianluigi and Ballarin, Francesco and Scandurra, Leonardo and Pichi, Federico},
year = {2024},
series = {{{SISSA Springer Series}}},
volume = {5},
publisher = {Springer Nature Switzerland},
address = {Cham},
doi = {10.1007/978-3-031-49892-3},
isbn = {978-3-031-49891-6 978-3-031-49892-3} }

[0] Gianluigi Rozza, Francesco Ballarin, Leonardo Scandurra, Federico Pichi. Real Time Reduced Order Computational Mechanics: Parametric PDEs Worked Out Problems. Springer Nature Switzerland, 2024.

Proceedings

bib

@incollection{PichiReducedOrderModels2024,
title = {Reduced {{Order Models}} for the {{Buckling}} of {{Hyperelastic Beams}}},
booktitle = {Reduction, {{Approximation}}, {{Machine Learning}}, {{Surrogates}}, {{Emulators}} and {{Simulators}}: {{RAMSES}}},
author = {Pichi, Federico and Rozza, Gianluigi}, editor = {Rozza, Gianluigi and Stabile, Giovanni and Gunzburger, Max and D’Elia, Marta},
year = {2024},
pages = {199–240},
publisher = {Springer Nature Switzerland},
address = {Cham},
doi = {10.1007/978-3-031-55060-7_9},
isbn = {978-3-031-55060-7} }

[5] Federico Pichi, Gianluigi Rozza. Reduced Order Models for the Buckling of Hyperelastic Beams. In the proceedings of Reduction, Approximation, Machine Learning, Surrogates, Emulators and Simulators: RAMSES, 2024.

bib

@incollection{KhamlichChapter15Reduced2022,
title = {Chapter 15: {{Reduced Order Models}} for {{Bifurcating Phenomena}} in {{Fluid-Structure Interaction Problems}}},
shorttitle = {Chapter 15},
booktitle = {Advanced {{Reduced Order Methods}} and {{Applications}} in {{Computational Fluid Dynamics}}},
author = {Khamlich, M. and Pichi, F. and Rozza, G.},
year = {2022},
series = {Computational {{Science}} \& {{Engineering}}},
pages = {311–324},
publisher = {{Society for Industrial and Applied Mathematics}},
doi = {10.1137/1.9781611977257.ch15},
isbn = {978-1-61197-724-0}}

[4] M. Khamlich, F. Pichi, G. Rozza. Chapter 15: Reduced Order Models for Bifurcating Phenomena in Fluid-Structure Interaction Problems. In the proceedings of Advanced Reduced Order Methods and Applications in Computational Fluid Dynamics, 2022.

bib

@incollection{PichiChapterReducedBasis2022,
title = {Chapter 5: {{Reduced Basis Approaches}} to {{Bifurcating Nonlinear Parametrized Partial Differential Equations}}},
shorttitle = {Chapter 5},
booktitle = {Advanced {{Reduced Order Methods}} and {{Applications}} in {{Computational Fluid Dynamics}}},
author = {Pichi, F. and Ballarin, F. and Rozza, G.},
year = {2022},
series = {Computational {{Science}} \& {{Engineering}}},
pages = {97–123},
publisher = {{Society for Industrial and Applied Mathematics}},
doi = {10.1137/1.9781611977257.ch5},
isbn = {978-1-61197-724-0}}

[3] F. Pichi, F. Ballarin, G. Rozza. Chapter 5: Reduced Basis Approaches to Bifurcating Nonlinear Parametrized Partial Differential Equations. In the proceedings of Advanced Reduced Order Methods and Applications in Computational Fluid Dynamics, 2022.

bib

@incollection{PichiChapterFiniteElementBased2022,
title = {Chapter 2: {{Finite Element-Based Reduced Basis Method}} in {{Computational Fluid Dynamics}}},
shorttitle = {Chapter 2},
booktitle = {Advanced {{Reduced Order Methods}} and {{Applications}} in {{Computational Fluid Dynamics}}},
author = {Pichi, F. and Strazzullo, M. and Ballarin, F. and Rozza, G.},
year = {2022},
series = {Computational {{Science}} \& {{Engineering}}},
pages = {13–58},
publisher = {{Society for Industrial and Applied Mathematics}},
doi = {10.1137/1.9781611977257.ch2},
isbn = {978-1-61197-724-0}}

[2] F. Pichi, M. Strazzullo, F. Ballarin, G. Rozza. Chapter 2: Finite Element-Based Reduced Basis Method in Computational Fluid Dynamics. In the proceedings of Advanced Reduced Order Methods and Applications in Computational Fluid Dynamics, 2022.